Приложение к свидетельству № <u>५/35</u> об утверждении типа средств измерений

СОГЛАСОВАНО) :
Руководитель ГЦІ	1 CN
ФГУ «Иижегородский	і ЦСМ»
<u> Арекеу</u> Решет	ник И. И
«17/ abigana	2010 г.

		<i>[</i>	
Системы автоматизированные анализа	Внесены в	государственный	реестр
состава газов DDOP	средств изме		
	Регистрацио	нный № <u>Ч57(6-10</u>	
	Взамен №		

Выпускаются по технической документации фирмы "FLSmidth A/S" Vigerslev Allé 77, DK-2500 Valby, Copenhagen, Дания

Назначение и область применения

Системы автоматизированные анализа состава газов DDOP (далее – системы) с двумя зондами и водяным охлаждением предназначены для:

- измерения содержания кислорода (O_2), оксида углерода (CO), оксида азота (NO) в отходящих дымовых газах и технологических газовых средах топливосжигающих установок при температурах среды до 400 °C и пылесодержании до 200 г/м³.

Основная область применения систем — мониторинг атмосферы печей, экологический контроль, оптимизации технологического процесса изготовления цемента.

Описание

Газоаналитическая система позволяет в реальном времени измерять, контролировать и архивировать параметры основных компонентов газов горения - CO, NO, O_2 .

Отбор газовой пробы производиться пробоотборным устройством. Пробоотборное устройство оборудовано фильтром и системой подогрева с независимым контроллером температуры и системой обратной продувки, позволяет отбирать пробу непосредственно из контролируемого оборудования — на выходе из теплообменника. Транспортировка пробы осуществляется по обогреваемой линии.

Система выполняет измерения с помощью двух различных зондов, расположенных на общем фланце. Единовременно проба газа отбирается с одного зонда – другой в режиме ожидания. Переключение между зондами выполняется с регулярными интервалами без нарушения процесса измерения при переключении или механической очистке зондов.

Полученные данные передаются оператору печи и используются в дальнейшем для корректировки работы печи.

Система состоит из следующих компонентов:

- блок контроля и анализа газа (БКАН);
- 2 зонда пробоотборных из легированной нержавеющей стали. Зонды рассчитаны на работу в агрессивной среде производства цемента;
- 2 пробоотборных шланга, для предотвращения конденсации в них предусмотрен подогрев с помощью электричества до 180 °C;
- блок очистки зонда, предназначенный для регулирования подачи очистного воздуха на зонд. Он включает раму из нержавеющей стали, ресивер сжатого воздуха 90 л и шкаф из нержавеющей стали для продувочных клапанов. Ресивер сжатого воз-

служит в качестве накопителя для обеспечения максимальной эффективности очистки. Цикл очистки регулируется блоком контроля и анализа газа;

- набор баллонов с газами для автокалибровки;
- автоматизированное рабочее место оператора компьютер промышленного исполнения с установленным ПО DDOP FLSmidth A/S.

Блок контроля и анализа газа выпускается в двух исполнениях - GASloq 1200 или GASloq CUBE. GASloq 1200 — компактный вариант размещения оборудования, со всеми компонентами, установленными в одном шкафу. GASloq CUBE — вариант облегченного доступа к оборудованию, в шкафу увеличенного размера, с монтажом оборудования по стенам шкафа.

Блок контроля и анализа газа включает газоанализатор, калибровочную систему, устройства контроля потока, регуляторы и другие электронные компоненты для управления работой системы.

В системе применяется газоанализатор многоканальный A02000 (госреестр № 27467-09) производства фирмы "ABB Automation GmbH", Германия, с инфракрасным сенсором Uras 14 и термомагнитным сенсором Magnos 17.

Данные измерений газоанализаторов по интерфейсу RS-485 передаются на автоматизированное рабочее место оператора. Мнемосхемы программного обеспечения (ПО) на автоматизированном рабочем месте оператора отображают работу системы. Программное обеспечение разработано фирмой "FLSmidth A/S" и защищено от несанкционированного доступа паролями.

На дисплее показаны все основные компоненты системы и пояснения, показывающие их назначение. Красные и желтые лампы служат для сигнализации. Зеленые лампы служат для индикации нормальных функций. Мнемосхемы оснащены мнемоклавишами для управления всей системой. Кроме того, предусмотрен список предупредительных сигналов и журналы активных операций, операций за прошлые периоды и событий.

На АРМ операторов системы выполняется мониторинг измерительной информации, анализ, печать отчетных форм.

Для удобства анализа измерительной информации, данные измерений могут быть представлены в виде таблиц либо диаграмм в реальном времени. Для построения диаграмм в системе предусмотрены внутренние часы с синхронизацией по удаленному источнику точного времени — серверу, также предусмотрен интерфейс для приемника точного времени от спутников глобальной системы позиционирования (GPS). Синхронизация времени обеспечивает поддержание системного времени APM, и производится один раз в час при рассогласовании более ± 2 с.

Основные технические характеристики

Анализируемый компонент	CO	NO	O ₂
Диапазоны измерений объемной доли	от 0 до 3 % от 0 до 5 %	от 0 до 1500 млн ⁻¹	от 0 до 10 % (от 0 до 25 %)
Пределы допускаемой основной приведенной погрешности, %	± 2	± 10	± 2 (± 1)
Пределы допускаемых значений дополнительной погрешности: от измерения атмосферного давления на 1 кПа, %	± 0,2	± 0,2	± 0,01 (± 1,5)
от измерения температуры ок- ружающей среды на 10°C, %	± 2	± 2	± 0,5
от измерения напряжения пита- ния на ± 5 %, %	± 0,2	± 0,2	± 0,2
Время прогрева, ч	0,5	0,5	0,25
Время установления показаний, не более, с	60	60	80

Пределы допускаемой абсолютной погрешности измерения времени APM, секунд в сутки.	± 10
Условия эксплуатации:	
- температура окружающей среды, °С	от 5 до 40
- относительная влажность, не более, %	75
- атмосферное давление, кПа	от 84,0 до 106,7
- скорость потока анализируемого газа, л/ч	от 20 до 60
Габаритные размеры, мм, не более:	
- шкаф газоанализатора	400 x 800 x 2000
- шкаф монтажный (GASloq CUBE)	2200 x 2200 x 1800
Масса, кг, не более:	
- шкаф газоанализатора	150
- шкаф монтажный (GASloq CUBE)	900
Параметры электропитания	напряжение 220 _{-15%} В пе-
	ременного тока частотой
	(50±1) Гц
Потребляемая мощность, В∘А, не более: - шкаф газоанализатора	350
- блок контроля и анализа газа, с подогреваемым шлангом	6500
Средняя наработка на отказ, ч, не менее	100000
Средний срок службы, лет, не менее	12

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульные листы эксплуатационной документации.

Комплектность

В комплект поставки системы входят:

- блок контроля и анализа газа (в комплекте с набором баллонов с ПГС)	1 шт.;
- комплект из 2х зондов (в комплекте с шлангами, блоком очистки)	1 шт.;
- АРМ оператора	1 шт.;
- руководство по эксплуатации	1 экз.;
- методика поверки	1 экз.

Поверка

Поверка системы осуществляется в соответствии с методикой, изложенной в документе «Системы автоматизированные анализа состава газов DDOP. Методика поверки» и утвержденной руководителем ГЦИ СИ ФГУ "Нижегородский ЦСМ" в августе 2010 г.

Перечень основного оборудования, необходимого для проведения поверки: ГСО состава газовых смесей по ТУб-16-2956-01, установка динамическая "Микрогаз-Ф" с источниками микропотоков, генератор газовых смесей ГГС-О3-О3, генератор динамический влажного газа "Эталон-02", генератор влажного газа образцовый динамический "Родник-2М", секундомер СМ-60 ГОСТ 5072-79, гигрометр психрометрический типа ВИТ-1, барометр-анероид БАММ-1, ротаметр РМ-А-0,063 ТУ.

Межповерочный интервал 1 год.

Нормативные и технические документы

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Техническая документация фирмы "FLSmidth A/S", Дания.

Заключение

Тип "Системы автоматизированные анализа состава газов DDOP" утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Изготовитель: "FLSmidth A/S" Vigerslev Allé 77, DK-2500 Valby, Copenhagen, Дания